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ABSTRACT 
A new method has been developed for determining the effect of flow on heat transfer in die casting during 
steady production. Aside from the assumption that the casting is thin in comparison with its overall size, 
there are no restrictions on either the die or casting geometry. Important questions concerning the nature 
and significance of heat transfer during flow are addressed by analysing a representative two-dimensional 
die. The results show that the effect of flow can be critical when the fill time is long, the casting is thin, 
or the thermal conductance of the die lubricant is high. 
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INTRODUCTION 

A die casting die consists of two or more components that form a cavity when closed. To regulate 
heat removal from the casting, a coolant, such as water, is usually circulated through conduits 
drilled in one or more die components. The cycle begins when hot liquid metal is injected into 
the cavity. Some time after the metal cools and solidifies, the dies are opened and the casting 
is ejected. After the exposed cavity surfaces have been sprayed with fresh lubricant, the die is 
closed and the cycle repeats. Eventually, the start-up transients decay and the die temperatures 
become periodic. If the die is relatively large, it can take one or more hours to progress from 
the start-up phase to steady operating conditions. 

Proper control of die temperatures is a major concern in ensuring quality die castings1,2. This 
is evidenced by the common practice of installing elaborate cooling systems to maintain die 
temperatures at appropriate levels. Casting defects due to improper cooling include shrinkage 
porosity, incomplete fill and loss of dimensional control. Despite the importance of cooling 
design, the development of effective thermal analysis techniques for die casting has been slow. 
One reason is that related computational research has been oriented towards developing 
traditional finite element/difference methods for analysing single cycle processes such as sand 
casting3. The situation in die casting is considerably more complex because the steel dies retain 
the thermal imprint from previous cycles. Although the usual transient finite element/difference 
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schemes are applicable, numerical integration costs incurred while tracking the response from 
start-up to the steady periodic operating conditions can be excessive. 

Most applications of the aforementioned thermal analysis techniques in die casting rely on 
the so-called instant fill assumption. Ordinarily, this assumption is justified by the fact that the 
fill times encountered in conventional die casting tend to be extremely short. Nevertheless, the 
effect of flow on heat transfer is likely to become increasingly important due to the current 
interest in utilizing lower injection rate processes to produce higher quality castings. 

Although it is possible to account for the effect of flow using the previously noted computational 
techniques, one must contend with a substantially reduced time scale. This can translate into a 
prohibitive increase in computational cost, especially when dealing with complex 
three-dimensional die models4,5. One way to lower the costs of standard solution procedures is 
to ignore periodicity requirements. In such a strategy, one assumes a set of initial die temperatures 
and integrates the governing equations over a single casting cycle6,7. Any computational 
advantage afforded by this ad hoc procedure is not likely to offset the penalty of reduced accuracy. 

An effective alternative, which avoids successive numerical integrations by determining periodic 
solutions directly, was introduced by Caulk8 for symmetric problems and extended by Barone 
and Caulk1 to account for asymmetric thermal coupling between die components of arbitrary 
shape. This method is based on the concept of a transient surface layer in the die. For the 
layer-based methodology to apply, the casting thickness must be small in comparison with its 
overall size. Several important modelling simplifications emerge when this condition is satisfied 
and the conductivity of the thin casting is high, relative to that of the die steel. First, the casting 
can be represented by a surface with an associated areal mass density to represent variations in 
its thickness. Second, transverse temperature gradients through the casting thickness can be 
neglected. The additional observation that the cycle time is usually much shorter than the 
start-up transient implies that the characteristically large swings in die temperatures, caused by 
the periodic injection of hot metal, are confined to a relatively thin layer near the cavity surfaces. 

Despite the previously noted advantages of the layer method1,8, it is still limited to problems 
where the instant fill assumption applies. Nevertheless, the computational appeal of this 
approach, coupled with a growing need for including the effect of flow on heat transfer in die 
casting, is sufficient reason for considering an extension. The present paper features a novel 
generalization that overcomes the instant fill limitation while retaining the essential 
computational advantages inherent in the original layer-based methodology. Critical additions 
to the layer formulation1 include the use of spatially-varying initial casting temperatures and 
impulsive heat fluxes to account for heat that is lost by the liquid metal and absorbed by the 
die during flow. Both of these quantities must be obtained from a separate solution of the energy 
equation during fill. To focus attention on the primary analytical contribution, we develop and 
solve the energy equation assuming that the velocity field during flow is known. Moreover, 
convective terms are represented in terms of thickness averaged velocities. Justification for this 
latter assumption stems from the fact that the castings are thin in comparison with their overall 
sizes. Since fill times, even for slow flow, are short relative to cycle times, the depth to which 
transient temperatures penetrate into the die during flow is correspondingly small. This implies 
that most of the die can be ignored when analysing heat conduction during flow. 

In general, the amount of heat transferred during flow depends on the die temperatures just 
before injection. Die temperatures, in turn, are a direct function of the heat transferred during 
flow. The fact that the explicit form of this dependence is encumbered by an extremely complex 
spatial interaction, as well as a material non-linearity due to the presence of latent heat, makes 
it necessary to employ an iterative solution method. The iteration is initiated by solving for die 
temperatures using the instant fill assumption. After analysing the problem of heat transfer 
during fill, the generalized layer analysis is then used to determine a corrected set of die 
temperatures which form the new starting values for the next iteration. 

One iteration is usually sufficient for practical convergence of the generalized layer approach. 
Assuming a flow solution is available and essentially independent of heat transfer, the 
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computational investment in applying the present approach entails little more than two steady 
heat conduction analyses of the die and one transient heat conduction analysis of the liquid 
metal during flow. 

The analytical basis for the previously noted computational advantages will become apparent 
in the formal development to follow. First, we derive the energy equations valid during flow 
and discuss their role in the overall solution process. Further examination of these equations 
yields an important non-dimensional number which indicates how key process parameters affect 
die temperatures. Next, we extend the layer equations in Reference 1 to include the effect of 
flow and use the resulting generalized contact surface conditions to formulate the iterative 
solution method. Lastly, we consider results for a representative two-dimensional die to verify 
convergence and determine when flow is significant. 

HEAT TRANSFER DURING FLOW 

As a first step in the analytical development, we consider flow as it relates to heat transfer in 
die casting. The assumption that the transverse thermal resistance of the liquid metal is negligible 
in comparison with that of the die lubricant implies that thickness variations in the casting 
temperatures, θc, can be neglected. Since our overriding concern is with the thermal impact of 
convective energy transport during fill and not with details of the actual flow field, the liquid 
metal velocities are averaged across the cavity thickness, dc. Consequently, we define a surface 
representation of the casting in terms of the curvilinear coordinates xa (a = 1,2), such that 
θc = θc(xx, t) and V = V(xx, t), where V is the thickness-averaged velocity. In this case, the time 
t is reckoned from the onset of injection. The same curvilinear coordinates, xx, together with 
an inwardly directed normal coordinate z (z = 0 on the cavity surfaces) locate nearby points in 
adjacent die components (Figure 1). The corresponding temperature fields in the die are 
designated by θβ(xx, z, t), where β = 1, 2. 

In deriving the appropriate energy equations we exploit the fact that heat conduction tangential 
to the cavity wall in both the casting and adjacent regions of the die is negligible during cavity 
fill. Finally, we ignore any casting temperature change due to viscous dissipation. If 
θβ

s = θβ
s(xx, 0, t) and hβ denote the temperatures on the two adjacent cavity surfaces and the 

corresponding thermal conductance of the die lubricant, respectively, then the appropriate energy 
equation for the liquid metal is: 
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where 

Note that pc and cc refer to the mass density and specific heat of the liquid metal, respectively. 
To account for the possible release of latent heat during flow we allow cc to vary with temperature. 
Consequently, (1) is materially non-linear. 

The presence of the last term in (1), which accounts for thermal coupling between the liquid 
metal and cavity surface via the conductance of the die lubricant, dictates the need for additional 
equations governing heat flow into the adjacent die components. Since the dominant direction 
of heat conduction during flow is normal to the cavity surface, these equations reduce to: 

where αβ is the thermal diffusivity associated with adjacent die components. Equation (3), together 
with (1) and the appropriate initial/boundary conditions enable us to solve for the casting 
temperatures and heat flux into the die during fill. 

Equations (1) and (3) can be written in a more physically revealing form by 
non-dimensionalizing with respect to the cavity length, Lc, the fill time, tf, and the injection 
temperature, θinj. After making the appropriate substitutions in (1) we obtain: 

where ∆c = dc/2, h = (h1 + h2)/2 and 
If we define a dimensionless length z' into the die in terms of a thermal penetration depth 5, 

the corresponding equation for the adjacent die components is: 

The requirement that the heat flux be continuous at the casting-die interface (z' = 0) can be 
expressed as: 

where kβ denotes thermal conductivity of the die steel. Lastly, the respective boundary and initial 
conditions at the gate (xx = x(g)

x) and in the die are: 

(x(g)
a,t) = l (7) 

(xx,z,0) = θβ(xx,z,0)/θinj (8) 
Note that the term θβ(xx, z, 0) refers to the pre-injection temperatures in adjacent die regions 
0 z δ, where δ ∞ max 

A qualitative analysis of (4) leads to a better understanding of the significance of energy 
transport during flow and its effect on die temperatures. We remark that the factor on the right 
hand side of (4): 

can be viewed as a dimensionless heat transfer coefficient relating heat transfer through the 
cavity walls to convective heat transfer in the axial direction of the cavity. Hence, for a given 
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die design, as the magnitude of this dimensionless number increases we expect to see an 
exacerbation of the effect of flow on the thermal response of the die. In particular, the influence 
of flow will increase anytime one or more of the following occurs: 

(1) an increase in the conductance of the die lubricant or coating; 
(2) an increase in fill time; 
(3) a reduction in casting density or specific heat; 
(4) a reduction in casting thickness. 

The effect of thickness is best understood by recognizing that ∆c is analogous to a hydraulic 
diameter and represents the ratio of the cross-sectional area available for convective energy 
transport to the cavity perimeter available for heat transfer to the die. Lastly, it is important to 
point out that the cavity length does not explicitly appear in (9). Additional results justifying 
the absence of this variable will be provided later in the specific context of an example problem. 

Obviously, any attempt to incorporate the effect of flow in some type of predictive capability 
would be complicated by the widely disparate time scales associated with cavity fill and the 
casting cycle. Typically, fill times for large aluminium castings range from 0.1 to 0.5 sec in 
contrast to cycle times of approximately one minute and start-up transients of several hours. 
As indicated previously, the extension of conventional schemes to include the effect of flow is 
conceptually straightforward but the extremely small time steps required during the flow make 
numerical integrations even more expensive than in cases where the instant fill assumption is 
made. Again, it is our intent to avoid this dilemma by capitalizing on the layer approach outlined 
earlier. In particular, we benefit from the fact that numerical difficulties that usually arise when 
there is a large disparity between cycle and start-up times have already been overcome. Hence, 
one need only contend with the new issue of short but finite fill times. An appropriate treatment 
for this problem will be presented in the next section. 

BASIC FORMULATION AND APPROACH 

Transient surface layer 
Since the present formulation generalizes the transient surface layer approach in Reference 1, 

we start by reviewing elements of the analysis which are common to both. In general, the layer 
depth d can be expressed as8: 

d = 1.5(αtc)1/2 (10) 
where a and tc denote the thermal diffusivity of the die material and cycle time, respectively. 
Again, we locate points in the die that are near the casting in terms of the two curvilinear 
coordinates, xx, defined on the cavity surface, and the corresponding inwardly directed normal 
coordinate z. In this case, however, 0 < z < d. The temperature in the layer, θ(xx, z, t), is 
approximated by the method of weighted residuals based on an N-th order polynomial. More 
specifically, if we let θ0(xx) denote the interface temperature between the layer and the steady 
interior region of the die, then: 

where the N time-dependent coefficients, θm(xx,t), represent generalized temperatures. Since heat 
conduction in the xx direction is neglected, the corresponding energy equation in each layer can 
be approximated by minimizing the integral of the residual, weighted by the trial functions in 
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(11). It follows that the desired integral is simply: 

where q represents the heat flux associated with θ(xx, z, t). Note that the constants p and c refer 
to the density and heat capacity of the die steel, respectively. After carrying out the indicated 
operations for both adjacent layers (β = 1,2) we have: 

where kβ denotes thermal conductivity and qβ
s the heat flux applied at the surface of each layer. 

Equation (13) is merely an ancillary condition for determining the flux qβ
i at the interface once 

(14) has been solved for the generalized temperatures θβ
m. 

A cursory examination of the capacitance terms in (14) may give rise to questions concerning 
numerical accuracy and robustness. Strictly speaking, the capacitance matrix associated with 
(14) is inherently ill conditioned and in fact is singular in the limit when N ∞. Nevertheless, 
previous analyses1,8 as well as our results indicate that remarkably accurate solutions can be 
obtained using a relatively small number of terms in (11). Since the aforementioned studies 
feature broadly representative examples, adverse conditioning is unlikely to be a factor in any 
of the intended applications. 

It follows from (14) that the solution for θβ
m depends entirely on the flux terms qβ

s associated 
with adjacent die surfaces. However, before defining appropriate expressions for these quantities 
we must first consider the energy balance in the casting. Since it is assumed that the temperature 
θc(xx, t) is uniform across the casting thickness, dc, the energy equation can be expressed as: 

-μccθc = q1
s+q2

s for 0 t tr (15) 
where μ = pcdc, cc and tr represent the areal mass density, specific heat and residence time of 
the casting, respectively. In general, the specific heat of the casting is a non-linear function of 
the absolute temperature. Here, it suffices to employ the following stepwise representation: 

defined in terms of the liquidus and solidus temperatures θliq and θsot and the latent heat per 
unit mass of the casting, QL. 

The above development is essentially the same as in Reference 1. Subsequently, we address 
new issues that pertain to the forthcoming generalization for flow. In this case, the desired 
expressions for qβ

s should reflect the thermal interaction between the casting and adjacent die 
surfaces, both during and after flow. First, consider the injection phase of the casting cycle and 
let Qβ

f(xx) denote the heat per unit area absorbed by the die at xx during the fill time tf. Since 
the fill time tf is generally much less than the cycle time tc, the energy exchange during flow 
can be regarded as taking place instantly at the start of the cycle when t = 0. In effect, the die 
is subject to an impulsive heat flux defined as: 

qβ
s = Qβ

fδ(t) (17) 
where δ(t) denotes the Dirac delta function. If (17) is incorporated in the analysis of (14), 
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conservation of energy requires that we also impose the residual temperature of the liquid metal 
just after fill as the initial condition at t = 0+ . In other words, 

θo
c = θc(xx,0+) (18) 

Obviously, (18) represents a significant departure from the previous layer analysis in Reference 
1, which neglects the effect of flow and assumes a uniform initial temperature equal to the 
injection temperature θinj. Note that the residual temperature 6° as well as Qβ

f are computed 
quantities resulting from the analysis of heat transfer during flow discussed earlier. 

After 'flow', when 0 < t < tc, the relationships that define qz
s are the same as in Reference 1. 

Since the contact resistance due to the die lubricant during and after the residence time tr is 
finite we let: 

where hβ and h0 represent the conductance of the lubricant on the cavity surface, ∂C, before 
and after ejection. In this case, θa denotes the ambient temperature. 

Jump conditions 
One of the unique features of the die casting process is that die temperatures are subject to 

periodicity conditions, while initial conditions are imposed on the casting. In short, the solution 
must satisfy a coupled periodic/initial value problem. As indicated in (18), the proper initial 
condition for the casting is the corresponding residual temperature just after cavity fill. If it were 
not for the impulsive flux the appropriate periodicity condition for the die temperatures would 
be the same as in Reference 1. In the present case, however, some additional development is 
required. After substituting the impulsive flux, (17), into the basic layer equations, (14), we 
integrate to obtain: 

where qβ
s is defined in (19). The limit as t → 0 can be evaluated following explicit integration of 

the first and third terms in (20). Since the remaining integrands are bounded functions, the 
corresponding integrals vanish as t → 0 and the final expression reduces to the jump condition: 

where 

Note, for the special case of instant fill, Qβ
f = 0 and (21) reduces to the periodicity condition, 

[θβ
m] = 0, introduced in Reference 1. In the present formulation the entire effect of flow is 

embodied in (21) and the corresponding initial condition, (18). 
The addition of the above jump condition completes the generalization of the layer formulation 

in Reference 1. We can now solve the governing equations, (14) and (15), for the corresponding 
generalized temperatures with the help of (16), (18), (19) and (21), provided the temperatures 
θβ

o at the interface between the transient surface layer and steady interior region are known. It 
turns out that interface temperatures can be conveniently extracted from a steady analysis of 
the die, prior to recovering transient temperatures in the layer. The viability of this approach 
hinges on the preliminary linearization of (16) introduced by Barone and Caulk1. Basically, the 
idea is to replace the non-linear representation for the casting material (16) by the constant 
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sensible thermal capacitance, co. The energy associated with the release of latent heat can then 
be accounted for by defining a new initial casting temperature, θ*c, as follows: 

θ*c = θo
c(xx + {xx)/co (23) 

where (xx) denotes the amount of latent heat left in the casting at xx when fill is complete. 
Again, once the steady solution has been determined, we can recover the transient temperatures 
in the layer by solving the fully non-linear equations with specified interface temperatures. In 
general, the integration is continued over successive casting cycles until the jump conditions in 
(21) are satisfied. Fortunately, if the pre-injection temperatures based on the linearized analysis 
are used as starting conditions, (21) is usually satisfied within a few cycles. 

By exploiting the linearized solution of the layer equations we are able to generate appropriate 
contact surface conditions that relate the time-averaged fluxes and temperatures on the cavity 
surface, thereby making it possible to solve the steady interior problem in a reasonably 
straightforward fashion. Although a detailed analysis, pertaining to instant fill, is available in 
Reference 1, those elements of the development which support the present geeneralization will 
be included in the next section for completeness. 

Contact surface conditions 
As indicated above, the approach for solving the transient layer equations requires that we 

first determine the steady underlying temperatures in the die. Obviously, the crucial step here 
is to establish the boundary conditions on the cavity surface that properly account for the casting 
and any thermal coupling between adjacent die components. These conditions follow directly 
from the time averaged solutions of the linearized layer equations. In this case, unessential detail 
is avoided by letting ho = 0 in (19). After substituting this version of (19) in (14) and (15), we 
use (23) to obtain the following linearized expressions valid during the residence time (0 < t < tr): 

and 

where 
θβ

c = θβ
c - θβ

o (26) 
A similar procedure applied to the post ejection period when (tr t < tc) yields 

Note that the change of variables defined in (26) is used to transform the governing equations 
to the indicated homogeneous form as in Reference 1. Clearly, the price for this simplification 
is that there are now two casting equations (25)1,2 subject to the following initial conditions: 

θβ
c(xa,0+) = θ*c

_θβ
o (28) 

In addition to the above initial conditions, the linear solution must also satisfy the jump conditions 
(21). Prior to enforcing these conditions, the two sets of equations valid for the residence and 
post ejection times are each expressed as a linear combination of their respective eigenfunctions. 
The redundant coefficients are eliminated by applying temperature continuity at t = tr. 
Ultimately, the solution to the resulting set of equations is used to determine an expression for 
time averaged temperatures on the cavity surface, θβ

s. To expedite the forthcoming development 
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we first recall8 that: 

and then observe, on the basis of (24)-(27), that the solution is linear and homogeneous in the 
initial temperature θ*c — θβ

o and the heat absorbed during flow Qβ
f. Hence, we can express θβ

1 as: 

Each of the coefficients in (30) represents an influence function generated by time averaging 
transient solutions that satisfy one of four independent unit initial/jump conditions with the 
remaining three set to zero. If (29) is used to eliminate θβ

o from (30) then we have: 

where 

aβy = ( δ β σ - A β σ ) - 1 A a y ( 3 2 ) 

and δβσ denotes the Kronecker delta. Since qβ
s = (kβ/dβ)θβ

1 (see Reference 8), (31) can be expressed 
as: 

With the help of: 

(33) can be rearranged more compactly as follows: 
= (k1/d1)[(a11 + a12)(θ1

cf -θ1
s) + a12(θ1

s - θ2
s)] 

= (k2/d2)[(a22 + a21)(θ2
cf) + a21(θ2

s - θ1
s)] 

where 

θ1
cf = θ*c+ b l /(a1 1 + a12) 

θ2
cf = θ*c + b2/(a22 + a21) 

The above equations are the desired contact surface conditions which represent the steady flux 
on the cavity surface. Not only does (35) have the same form as its counterpart for the case of 
instant fill given in Reference 1, but the entire effect of flow is captured in the non-uniform 
distribution of the generalized initial casting temperatures θ1

cf and θ2
cf. 

Since the boundary conditions on exterior die surfaces are unaffected by the casting, they can 
be expressed in terms of the standard relationship, (19)2. Of course, (19)2 does not apply to 
parting surfaces, because the amount of heat flow depends on how long the die is closed. In this 
case, it is necessary to employ a special adaptation of the transient layer analysis developed in 
Reference 1. Once the boundary conditions on all die surfaces (including cooling lines) have 
been prescribed, steady die temperatures can be calculated using the special boundary element 
approach discussed in Reference 1. 
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Solution method 
The basic layer equations and associated contact surface conditions needed in determining 

underlying steady temperatures in the die were established in the two previous subsections. 
During the aforementioned development, it was tacitly assumed that the residual temperature 
θ°c(xx) and the heat absorbed by the surface layers at the end of fill Qβ

f(xa) are known quantities. 
Although 0° and Qβ

f are not known a priori, they can be determined from an analysis of heat 
transfer during flow, provided the initial die temperatures θβ(xa, z, 0) prior to injection are 
available. However, these temperatures are also unknown because they depend on θo

c and Qβ
f• 

It is also apparent from the previous development that the explicit form of the implied relationship 
between θo

c, Qβ
f and θβ is encumbered by an externally complex spatial coupling as well as a 

material non-linearity due to the presence of latent heat. For these reasons we opt for the following. 
iterative solution procedure: 

(1) solve for the steady die temperatures assuming instant fill, with θ°c = θinj = constant and 

(2) recover the pre-injection temperatures by solving the non-linear transient equations, (14) 
and (15); 

(3) perform the local analysis of heat transfer during flow; this entails solving (4) and (5) to 
determine the residual casting temp. θ°c(xa), and the strength of the impulsive flux, Qβ

f(xa); 
(4) solve for the steady die temperatures using the generalized contact surface condition (35); 
(5) recover the new pre-injection temperatures from (14) and (15); 
(6) return to step (3) and repeat the process until the die temperatures converge. We 

recommend a relative convergence criterion based on a distributed least squared difference 
in average die temperatures as outlined in the results section. 

The above procedure can be applied to any die casting die used to make shell-like parts, provided 
a suitable capability for flow analysis is available. 

Although a general treatment of cavity fill is beyond the scope of the present paper, the 
two-dimensional example considered in the next section provides a suitable test of convergence. 
Since the geometry and process conditions considered are representative of actual die casting 
operations the results also offer some valuable physical insight regarding the effect of flow. 

TWO-DIMENSIONAL EXAMPLE 
Physical description 

We confine attention to aluminium castings and consider the representative two-dimensional 
die shown in Figure 2a. The 0.5 m long die cavity, with a nominal thickness of 6 mm, is centred 
between two identical die components each 1 m long by 0.5 m deep. Each die component contains 
two cooling lines spaced 25 cm apart at a depth of 10 cm away from the cavity surface. These 
die and casting dimensions are indicative of large diecast automotive components. Specific 
material properties for the die steel and aluminium considered are given in Table 1 together 
with fixed process variables. Note that the selected cycle and residence times of 80 and 30 sec, 
respectively, are representative of the intended applications. 

Numerical implementation 
The time-averaged die temperatures are computed on the basis of the boundary element model 

in Figure 2b, assuming a uniform distribution of temperature and heat flux on each element. 
Unessential detail is avoided by imposing adiabatic boundary conditions on all exterior and 
parting surfaces. Since both the boundary conditions and the geometry are symmetric about 
the casting centreline only one half of the die is modelled. An additional consequence of the 
noted symmetry is that the cross-coupling coefficients in the contact surface conditions 
(35) vanish. 
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Table I 

Casting properties 

Specific heat, cc 
Density, pc 
Conductivity, kc 
Latent heat, QL 
Liquidus, 0liq 
Solidus, θsol 

1000 J/kg K 
2570 kg/m3 

108 W/m K 
390000 J/kg 

593°C 
538°C 

Die properties 

Specific heat, c 
Density, p 
Conductivity, k 

584 J/kg K 
7760 kg/m3 

29 W/m K 

Process parameters 

Injection temperature, θo
c 

Cycle time, tc 
Residence time, tr 
Water temperature, θW 

620°C 
80 sec 
30 sec 
25°C 

As indicated earlier, the determination of transient temperatures from the non-linear surface 
layer equations, (14) and (15), is an essential complement to the underlying steady analysis 
discussed in the previous paragraph. Although the basic approach used in solving these equations 
is outlined above, a more complete treatment of the transient recovery procedure as well as the 
corresponding analysis for steady die temperatures can be found in Reference 1. 

For the application considered the layer depth, dc, calculated from (10) is 34 mm. Additionally, 
the associated die temperature is expressed as a sixth order polynomial. Previously, Caulk8 

showed that a fourth order polynomial is normally adequate, but did not anticipate the imposition 
of an impulsive heat flux. The decision to use a sixth order polynomial was made after analysing 
the impulse response in a half-space. As discussed in the Appendix, this approximation 
represented the best compromise between accuracy and efficiency. 

Recall from the discussion of the solution method that the local energy equations (4) and (5) 
must be solved at each iteration in order to predict the distributed heat, Qf, absorbed by the 
die during flow and the resulting non-uniform casting temperature, 0°. Once the velocity of the 
liquid metal is specified, the aforementioned equations are solved using a standard finite difference 
approximation. In this case, we use upwind differencing to approximate the convective term in 
(4) and apply the Crank-Nicolson implicit method to integrate (5). The cavity is discretized into 
38 equal control volumes, each requiring three time steps to fill. Similarly, a die depth equal to 

(a = a1 = a2) is divided into 20 equal segments. 
Accuracy of the finite difference predictions for Qf and θ°c was checked by comparing with 

results obtained from the Laplace transform method. The finite difference predictions, with cc 
for aluminium held constant, were virtually indiscernible from the Laplace transform solutions. 
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RESULTS 

By varying the conductance of the die lubricant, h, and the fill time, tf, we can represent a 
variety of casting processes. Typically in conventional die casting the die lubricants at the 
mould/metal interface are very conductive and the fill times are rapid. On the other hand, in 
permanent mould casting, die coatings are insulative and fill times are long relative to die casting. 
More modern processes such as squeeze casting are characterized by high to moderate values 
for the coating conductance, h, and intermediate fill times. 

Slow fill 
We first examine a case in which the effect of flow is significant. A 6 mm thick cavity, with a 

moderate h of 10,000 W/m2 K, is filled with aluminium in 0.5 sec. The results are shown in 
Figure 3. In the upper left quadrant of the Figure the relative convergence rate is plotted versus 
the iteration number. This relative convergence rate is expressed as the root mean square deviation 
of the average die surface temperature for the iteration in question with respect to the last or 
in this case fifth iteration. Further iterations produce no appreciable change in the results. Keep 
in mind that in the zeroth iteration the thermal analysis is performed using the instant fill 
assumption and only in subsequent analyses is the correction for the effect of flow made. For 
the first set of process conditions, practical convergence occurs after one or two iterations. 
Remarkably, as will be evident in subsequent results, even when the effect of flow is large the 
solution still converges in just one or two iterations. 

We next remark on the 'instant fill' average die temperatures, casting ejection temperatures, 
and solidification times, which are plotted versus the normalized distance along the cavity using 
broken lines (the origin is the gate location). For this die configuration the 'instant fill' 
predictions are symmetric about the cavity midpoint. Note also the thermal imprint of the 
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cooling line locations along the cavity as evidenced by the reduced temperatures and solidification 
times in their vicinity. 

Upon introducing the effect of flow we calculate the response indicated by the solid curves 
in Figure 3, superposed on the 'instant fill' results. The net effect of flow is to skew the temperature 
profiles and solidification times. Near the gate, where the exposure of the die to hot metal is 
longer than at the end of the cavity, the temperatures are higher and solidification times are 
longer than with 'instant fill'. At the end of the cavity, where casting temperatures after fill are 
lower, we see the reverse trend. If we quantify the effect of flow in terms of the temperature 
difference or skewness between the gate and the end of the cavity, the difference for this casting 
process is approximately 50°C for average die temperatures as well as casting ejection 
temperatures. The effect of flow on solidification times (Figure 3) naturally follows the same 
trends as the results for die and casting temperatures. At the gate the liquid metal takes longer 
to solidify than at the end of the cavity. This makes sense since by the time the liquid metal 
arrives at the end of the cavity it has already transferred some of its energy to upstream regions 
of the die. If the solidification time is less than the fill time anywhere in the casting we clearly 
have a non-viable process since the cavity cannot be completely filled. 

In Figure 4 we show what happens when h for the 6 mm thick cavity is increased to 
50000 W/m2 K. The largest allowable fill time for this set of process parameters is 0.5 sec; at 
longer fill times solidification occurs before the cavity can be completely filled. As indicated in 
Figure 4, the skewness in die temperatures is about 120°C. Similarly, the predicted ejection 
temperatures indicate the presence of a large thermal gradient in the casting. This temperature 
gradient could induce undesirable casting distortion. In spite of these extreme effects practical 
convergence occurs in only two iterations. 

Rapid fill 
To determine the effect of flow in a more conventional die casting setting, we model very 

rapid filling of the cavity with a moderate h of 10000 W/m2 K. Figure 5 shows the results for 
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filling the 6 mm thick cavity in 0.1 sec. There is very little difference between the thermal response 
with and without flow. The mere 10°C difference in average die temperatures with and without 
flow affirms the instant fill assumption for conventional die casting. 
Effect of casting thickness 

We summarize the effect of casting thickness in Figure 6, where the end-to-end differences in 
average die temperature are plotted versus the fill time for various casting thicknesses ranging 
from 2 to 10 mm. In this case, h was set at a mid-range value of 30000 W/m2 K. Note that the 
skewing of die temperatures increases as castings become thinner. Obviously, thinner walled 
castings are more difficult to cast without experiencing premature solidification. Notice that the 
curve corresponding to a 4 mm thick casting is truncated at 0.3 sec. This truncation indicates 
that at fill times longer than 0.3 sec, the casting solidifies prior to the completion of fill. We see 
similar results for the 2 mm casting. 

Cavity length 
Finally, we look at what happens when the overall die dimensions remain constant but the 

0.5 m cavity length, cooling line locations, and cooling line diameters are scaled up (down) by 
a factor of 1.414 (0.707). In Figure 7 the resulting average die temperatures are shown for a fill 
time of 0.2 sec and an h value of 30000 W/m2 K. Changing the overall casting size changes the 
heat absorbed by the die which in turn alters the underlying steady response in the die. We 
observe, however, that the magnitude of the end-to-end temperature difference remains virtually, 
unchanged. This is consistent with our earlier dimensional analysis which precluded cavity length 
as a relevant variable. 
Dimensionless number 

We have shown that the effect of flow on the overall thermal response in die casting is 
influenced by a number of parameters including the casting thickness dc, the fill time tf and 
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the coating conductance, h. The relationship between these quantities and the temperature 
skewness introduced by flow is most conveniently expressed in terms of the dimensionless number 
in (9). In Figure 8, we plot the end-to-end difference in average die temperatures obtained from 
the layer analysis versus (9) for a wide range of process conditions. The corresponding 
variations in the key parameters are as follows: 0.1 tf 5 sec, 2 dc 10 mm and 
1000 h 50,000 W/m2 K. Despite some scatter, a clear trend emerges. More importantly, the 
fact that the relationship is essentially linear confirms the validity of (9) in capturing the primary 
physical interactions. 
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APPENDIX 
Although solution errors associated with the layer representation for bounded heat flux 

boundary conditions were discussed in detail by Caulk8, the effect of impulsive flux loadings 
on accuracy is a new issue which requires further clarification. More specifically, we must 
determine whether the present generalization necessitates an increase in the order of the 
polynomial representation (11). To this end, we compare layer predictions to an exact solution 
for the impulse response in a half-space. In Figure 9 the time history of the normalized surface 
temperature is plotted on a log scale for polynomials of varying degrees. In Figure 10 we plot 
the spatial variation of the internal temperatures half a second after the application of the 
impulsive heat flux. 

In general, we expect to see a rapidly decaying, high amplitude (theoretically infinite) response. 
The approximation of the response is proportional to the inverse of the capacitance matrix and 
its decay characteristics relate to the eigenvalues of the corresponding system of first-order 
differential equations (14). Therefore, as the degree of the polynomial is raised, the form of 
equation (14) leads us to expect a higher amplitude response to the impulse with a more rapidly 

decaying initial transient. The results indicate that for our purpose, a polynomial of degree six 
exhibits a sufficiently convergent approximation. The increased accuracy brought by using an 
eighth-order polynomial is minimal. Additionally, the use of higher order polynomials results 
in a greater computational cost and reduced robustness. 


